Секция «Биологические и химические науки»

Биологические характеристики бактерий рода Enterobacter

Ахмарова $A.A.^{1}$, Сайдахасанова $X.B.^{2}$

1 - Чеченский государственный университет, Биолого-химический факультет, Грозный, Россия, E-mail: asetahmarova1998@mail.ru; 2 - Чеченский государственный университет, Биолого-химический факультет, Грозный, Россия, E-mail: petimat1227@mail.ru

Бактерии рода Enterobacter являются одним из ярких представителей семейства Enterobacter Они относятся к роду грамотрицательных палочкообразных неспорообразующих факультативно анаэробных бактерий. На основании изучения литературных источников, мы изучили некоторые морфологические и физиологические свойства бактерий этого рода.

Морфологические и тинкториальные свойства [1, 2].

Грамотрицательные палочки, соответствующие основным положениям характеристики семейства Enterobacteriaceae,

Культуральные свойства

Бактерии рода Enterobacter хорошо растут на обычных питательных средах, которые используют для выращивания энтеробактерий. Факультативные анаэробы. Температурный оптимум - 30-37 °C, оптимум рН - 7,2. На твердых средах образуют колонии, напоминающие колонии эшерихий и клебсиелле. Лактозо-положительные штаммы образуют розовые или малиновые колонии на среде Эндо (рис. 1), Плоскирева и Макконки. Лактозо-отрицательные штаммы образуют желтоватые колонии. Вызывают помутнение жидких сред.

Рис. 1. Enterobacter на среде Эндо

Ферментативные свойства

Биохимические реакции различных видов значительно отличаются. Энтеробактерии ферментируют сорбит, рамнозу, ксилозу, мальтозу, рафинозу, сахаразу, вариабельны в отношении инозита.

Антигенные свойства

Выделяют О- и Н-антиген; у капсульных штаммов также К-антиген, типирование проводят с О-антигеном.

Резистентность

Активное выведение антибиотиков из клетки имеет место у энтеробактерий. Однако активность этого процесса различна у отдельных видов. Такой механизм устойчивости бактерий имеет место относительно тетрациклинов, макролидов, карбапенемов и занимает заметное место в повышении общей резистентности микроорганизмов.

Основные факторы патогенности- микроворсинки и эндотоксин. Биологические характеристики различных видов энтеробактерий представим в таблице 1.

Таблица 1. Биологические характеристики различных видов [1] [2]

Тест

E. sakazakii

E.cloacae

E.agglomerans

E. aerogenes

```
Окрашивание по Граму
Подвижность
(+)
Оксидаза
Каталаза
Образование индола
(-)
Реакция с метиловым красным
Реакция Фогеса - Проскауера
+
(+)
Утилизация цитратов
+
Образование \mathrm{H_2S}
Гидролиз мочевины
\mathbf{H}
```

- Лизиндекарбоксилаза
- - - - + Аргининдегидролаза + + + - - - - Орнитиндекарбоксилаза + + + (-) + Разжижение желатина при температуре 22 °C

Желтый пигмент при температуре 24 °C

Значение энтеробактеров в патологии человека и животных до конца не выяснено. E. agglomerans может вызвать оппортунистические инфекции в ослабленных лиц, часто выявляется после инвазивных процедур.

Патогенез и клиническая картина

От больных людей, чаще всего выделяют E. cloacae (рис. 2), E. aerogenes, значительно реже - E. gergovial. Энтеробактеры редко вызывают самостоятельные инфекции. Чаще всего они инфицируют пациентов с ослабленным иммунитетом.

Рис. 2. E. cloacae

+

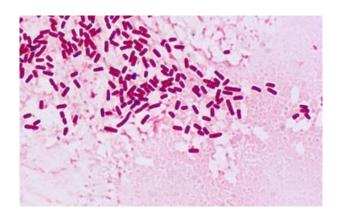
(+)

Микробиологическая диагностика

Методы диагностики: бактериологический и микроскопический. Большинство видов можно идентифицировать по дезоксикарбоксилированию аминокислот и разложением углеводов и по антигенной структуре.

Е. cloacae является важной условно-патогенной и мультирезистентной бактерий. Эти грамотрицательные бактерии были в основном описаны во время нескольких вспышек внутрибольничных инфекций в Европе и особенно во Франции. Распространение Enterobacter sp. связан с наличием избыточных регуляторных каскадов, которые эффективно контролируют проницаемость мембран, обеспечивая бактериальную защиту и экспрессию детоксифицирующих ферментов, участвующих в деградации / инактивации антибиотиков [3, 4, 5].

[1] Примечание: « + » - 90-100 % штаммов положительные; « (+) » - 21 — 89 % штаммов положительные; «—» — 0-9 % штаммов положительные; « (—) » — 10-24 % штаммов положительные; н — неизвестно


Источники и литература

- 1) Определитель бактерий Берджи / под. ред. Дж. Хоулта, Н. Крига, П. Снита [и др.].- Москва: Мир, 1997.- Т. 2.- 250 с.
- 2) Сиволодский Е. П. Систематика и идентификация энтеробактерий / Е. П. Сиволодский.- Издание второе, переработанное и дополненное.- Санкт- Петербург, $2008.-44~\rm c.$
- 3) Band V. I. et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae //Nature microbiology. − 2016. − T. 1. − № 6. − C. 16053.
- 4) Davin-Regli A. et al. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment //Frontiers in microbiology.— 2015.— T. 6.— C. 392.
- 5) Gomez-Simmonds A. et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78 //mBio.−2018.− T. 9.− № 3.− C. e00542-18.

Иллюстрации

Рис. 1. Рис. 1. Enterobacter на среде Эндо

Рис. 2. Рис. 2. Е. cloacae