Секция «Дискретная математика и математическая кибернетика»

О замене параметра в двухпараметрической оценке архитектуры нейросетевого аппроксиматора PL-функций

Научный руководитель – Половников Владимир Сергеевич

Шишляков Владимир Геннадьевич

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра общих проблем управления, Москва, Россия

E-mail: bolotmaks@yandex.ru

Введение

Данная работа является продолжением работы [2] по построению нейросетевой архитектуры с оценкой количества нейронов в ней, приближающую всякую кусочно-линейную функцию на некотором достаточно объемном множестве с любой наперед заданной точностью. В работе [2] дается оценка архитектуры по двум параметрам — количество объемных классов эквивалентности и количество гиперплоскостей, порождающих эти классы. Однако, последний параметр трудно использовать на практике, поэтому в данной работе рассматривается замена данного параметра на размерность признакового пространства, которая всегда известна при постановке задачи.

Основные понятия и формулировка результата

Функцию $\psi:\mathbb{R}\to[0,1]$ назовем сигмоидной, если ψ не убывает на \mathbb{R} и $\lim_{x\to-\infty}\psi(x)=0,$ $\lim_{x\to +\infty}\psi(x)=1.$ Функцию $\psi(x)$ назовем нечетной относительно y, если $\psi(x)-\stackrel{x\to -\infty}{y}=-(\psi(-x)-1)$ y).

Далее, ψ — сигмоидная функция, нечетная относительно $1/2, l_1, ..., l_k$ — гиперплоскости, разбивающие пространство \mathbb{R}^n на классы эквивалентности $R^1, ..., R^s$.

Назовем класс R^i плоским, если $\exists l_j: R^i \subset l_j$. Все классы, не являющиеся плоскими, назовем объемными.

Возьмем $\forall \xi > 0$ и рассмотрим множества

$$L_{i,\xi} = \{\overline{x} \in \mathbb{R}^n | |l_i(\overline{x})| < \xi\}, i = 1, ..., k.$$
 Обозначим $L_{\xi} = \bigcup_{i=1}^k L_{i,\xi}$.

В теореме 1 рассматривается построение нейронных сетей над множеством

 $B_1 = \{c, \gamma \cdot x, \sum_n (x_1, ..., x_n), \prod_n (x_1, ..., x_n), \psi(x)\}$, которое назовем базисом построения. Нейроном в базисе B_1 назовем всякую схему, вычисляющую одну из функций $\varphi(\sum_{i=1}^n w_i \cdot x_i + c)$ (нейроны—сумматоры) или $\varphi(\prod_{i=1}^n w_i \cdot x_i + c)$ (нейроны—продукторы), где $\varphi(x)$ полагается равной $\psi(x)$ или x.

Также дадим определение кусочно-линейной функции, следуя [1]. Будем говорить, что $f(\overline{x})$ является кусочно-линейной, если $f(\overline{x})|_{R^j} = \overline{b_i} \cdot \overline{x} + d_i$.

Основными выводами данной работы является теорема 1.

Теорема 1. Пусть классы эквивалентности такие, что s' классов являются объемными, все ограниченные классы являются симплексами и все неограниченные классы образуются естесственными продолжениями n-1-мерных граней симплексов, а $f(\overline{x})$ — кусочно-линейная функция, заданная над данными классами эквивалентности.

Тогда $\forall \varepsilon > 0, \forall \xi > 0, \forall R > 0$ существует нейронная сеть $G(\overline{x})$ над базисом B_1 такая, что $\sup_{\overline{x} \in O_R(\overline{0}) \setminus L_{\xi}} |G(\overline{x}) - f(\overline{x})| < \varepsilon$. Причем данная нейронная сеть обладает следующей архитектурой:

- 1. На первом слое не более $s' \cdot (n+1)$ нейронов-сумматоров, имеющих функцию активации $\varphi(x) = \psi(x)$;
- 2. На втором слое $2s'' \leq 2s'$ нейронов, из которых s'' нейронов имеют функцию активации $\varphi(x) = \psi(x)$, а остальные s'' нейронов $-\varphi(x) = x$;
- 3. На третьем слое потребуется s' нейронов-продукторов с тождественной функцией активации;
- 4. На четвертом слое потребуется один нейрон-сумматор с тождественной функцией активации.

Автор выражает благодарность научному сотруднику Половникову В.С. и доценту Часовских А.А. за постановку задачи.

Источники и литература

- 1) Половников В. С. Об оптимизации структурной реализации нейронных сетей. Диссертация на соискание степени кандидата наук. МГУ. Москва. 2007.
- 2) Шишляков В. Г. Об улучшениях нейросетевой архитектуры для приближения кусочно-линейных функций. Интеллектуальные системы. Теория и приложения. $2021. \ T. 25, № 4. \ C.271–274.$