Секция «Математическая логика, алгебра и теория чисел»

Несюръективные линейные преобразования тропических матриц, сохраняющие индекс цикличности

Научный руководитель – Гутерман Александр Эмилевич

Власов Александр Владиславович

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Москва, Россия E-mail: vs17012003@mail.ru

Основным объектом изучения в данной работе является тропическое полуполе, которое представляет собой множество $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ с операциями $a \oplus b = \max\{a,b\}$ и $a \otimes b = a+b$, [1, 3, 5]. Также рассматривается полукольцо тропических матриц размера $n \times n$, обозначаемое M_n . Оказывается, что матрицы над тропическим полукольцом являются удобным инструментом для работы с взвешенными ориентированными графами.

Другое важное изучаемое понятие — индекс цикличности, [6,7]. Данный инвариант определяется сначала для графов, а затем обобщается на тропические матрицы. Индекс цикличности используется в исследовании периодического поведения решений системы уравнений вида $x(k+1) = A \otimes x(k), \ k \ge 0$ с начальным условием $x(0) = x_0$, что, в свою очередь, применяется для решения различных оптимизационных задач.

После определения какого-либо инварианта возникает естественный вопрос: что можно сказать о сохраняющих его преобразованиях? В качестве примера можно рассмотреть следующую теорему, полученную Фробениусом в 1897 году, которая даёт описание биективных линейных преобразований комплексных матриц, сохраняющих их определитель:

Теорема 1. [2] Пусть $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ — биективное линейное отображение, такое что $\det(X) = \det(T(X))$ для всех матриц $X \in M_n(\mathbb{C})$. Тогда существуют невырожденные матрицы $P, \ Q \in M_n(\mathbb{C})$, такие что $\det(PQ) = 1$ и либо T(X) = PXQ для всех $X \in M_n(\mathbb{C})$, либо $T(X) = PX^tQ$ для всех $X \in M_n(\mathbb{C})$.

В данной работе представлена полная характеризация линейных отображений $T: M_n \to M_n$, сохраняющих индекс цикличности матриц. Доклад основан на результатах совместной работы, [4].

Источники и литература

- 1) Butkovič P. Max-algebra: the linear algebra of combinatorics? // Linear Algebra and its Applications. 2003. Vol. 367, P. 313–335.
- 2) Frobenius G. Uber die Darstellung der endlichen Gruppendurch lineare Substitutionen // Sitzungsber Deutsch. Akad. Wiss. Berlin. 1997.
- 3) Gavalec M. Linear matrix period in max-plus algebra // Linear Algebra and its Applications. 2000. Vol. 307, P. 167–182.
- 4) Guterman A., Kreines E., Vlasov A. Non-surjective linear transformations of tropical matrices preserving the cyclicity index // Preprint.
- 5) Heidergott B., Olsder G. J. and van der Woude J. Max Plus at Work // Princeton Series in Applied Mathematics. 2006.

- 6) Kennedy-Cochran-Patrick A., Merlet G., Nowak T., Sergeev S. New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank // Linear Algebra and its Applications. 2021. Vol. 611, P. 279–309.
- 7) Sergeev S. Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes // Linear Algebra and its Applications. 2009. Vol. 431, P. 1325–1339.