Секция «Математическая логика, алгебра и теория чисел»

О континуантах, допускающих одинаковое разложение

Научный руководитель – Ишмухаметов Шамиль Талгатович

Долгов Дмитрий Александрович

A c n u p a н m

Казанский (Приволжский) федеральный университет, Институт вычислительной математики и информационных технологий, Казань, Россия E-mail: DADolqoff@yandex.ru

Пусть числа a_i , b_i – входные числа i–го шага обобщенного алгоритма Соренсона (см. [1]), а $K = \{k_i\}_{i=0}^{\infty}$ – некоторая бесконечная последовательность натуральных чисел, больших двух. Определим величины $\beta_i = (\gcd(b_i, k_i))^{e_1}$, $\gamma_i = (\gcd(a_i, k_i))^{e_2}$ так, чтобы выполнялись условия: $\beta_i | b_i$, $\gamma_i | a_i$, ($\beta_i \gcd(b_i, k_i)$) $/\!\!/b_i$, ($\gamma_i \gcd(a_i, k_i)$) $/\!\!/a_i$. Если $\gcd(b_i, k_i) = 1$, тогда положим $e_1 = 0$ (аналогично для e_2).

Обобщение алгоритма Соренсона приводит к новому разложению числа a/b в цепную дробь с рациональными неполными частными с правым сдвигом (далее дробь) (см. [1]):

$$\frac{y_0 \gamma_0}{x_0 \beta_0} + \frac{k_0}{\left(\frac{y_1 x_0 \beta_0 \gamma_1}{\gamma_0 x_1 \beta_1} + \frac{k_1}{\left(\cdot \cdot \cdot + \frac{k_{n-1}}{y_n \prod_{\substack{0 \leqslant i < n, \\ i \not\equiv n \mod 2}} \prod_{\substack{0 \leqslant i \leqslant n, \\ i \not\equiv n \mod 2}} \gamma_t \right)}}{\prod_{\substack{0 \leqslant i \leqslant n, \\ j \equiv n \mod 2}} \prod_{\substack{0 \leqslant m \leqslant n, \\ m \not\equiv n \mod 2}} \gamma_m}\right)}$$
(1)

Числители и знаменатели таких дробей можно представить с помощью континуантов, то есть многочленов специального вида от переменных x_i , y_i , k_i , γ_i , β_i при условии $0 \le i \le n$. Существуют различные дроби c_1/a , c_2/a , континуанты знаменателей которых при разложении полностью совпадают, а для числителей выполняются условия $c_1 = c_2 d$, d > 1. Для каждой дроби c_1/a число остальных дробей длины n, для которых выполняются условия леммы Туэ [2], а все члены последовательности K равны k, меньше или равно $\lceil \sqrt{k} \rceil$.

Также существуют такие последовательности чисел $\{(a_{i_1},b_{i_1})\}$, $\{(a_{i_2},b_{i_2})\}$, полученные при помощи обобщенного алгоритма Соренсона для начальных пар чисел (a,b_0) , (a,b'_0) , которые в итоге "сходятся" в одну точку через некоторое количество шагов алгоритма. Эти последовательности связаны с дробями c_1/a , c_2/a , для числителей которых не выполняются условия $c_1 = c_2d$, d > 1. В докладе будут представлены оценки для числа обоих классов континуантов таких дробей, а также рассказано об их взаимосвязи с задачей средней длины цепной дроби [3].

Источники и литература

- 1) Долгов Д.А. О континуантах цепных дробей с рациональными неполными частными // Дискретная математика, (готовится к печати), 2022.
- 2) Thue A. Et par antydninger til en taltheoretisk metode // Kra. Vidensk. Selsk. Forh. vol 7, 57–75, 1902.
- 3) Долгов Д.А. Об аналогах теоремы Хейльбронна // Математические заметки, (готовится к печати), 2022.