Секция «Вещественный, комплексный и функциональный анализ»

ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY TYPE SPACES

Научный руководитель – Буренков Виктор Иванович

Сенуси Марьям Абделькадеровна

Postgraduate

Российский университет дружбы народов, Факультет физико-математических и естественных наук, Москва, Россия

E-mail: senoucim@yandex.ru

We study the boundedness from one general local Morrey-type space to another one of the generalized Riesz potential

$$(I_{\rho(\cdot)}f)(x) = \int_{\mathbb{R}^n} \rho(|x-y|)f(y)dy, \ x \in \mathbb{R}^n,$$

under certain assumptions on the kernel ρ . Our aim is to generalize the known results for the case of the classical Riesz potential I_{α} , in which $\rho(t) = t^{\alpha-n}$, t > 0, $0 < \alpha < n$.

Let, for a Lebesgue measurable set $\Omega \subset \mathbb{R}^n$, $\mathfrak{M}(\Omega)$ denote the space of all functions $f: \Omega \longrightarrow \mathbb{C}$ Lebesgue measurable on Ω , and $\mathfrak{M}^+(\Omega)$ denote the subset of $\mathfrak{M}(\Omega)$ of all nonnegative functions.

Определение 1. Let $0 < \theta \le \infty$ and let $w \in \mathfrak{M}^+((0,\infty))$ be not equivalent to 0. We denote by $LM_{p\theta,w(\cdot)}$ the local Morrey-type spaces, the space of all functions $f \in \mathfrak{M}(\mathbb{R}^n)$ with finite quasi-norms $\|f\|_{LM_{p\theta,w(\cdot)}} \equiv \|f\|_{LM_{p\theta,w(\cdot)}}(\mathbb{R}^n) = \|w(r)\|f\|_{L_p(B(0,r))}\|_{L_{\theta}(0,\infty)}$

where B(0,r) is the open ball centered at the origin of radius r > 0.

Определение 2. Let $0 < \theta \le \infty$. We denote by Ω_{θ} the set of all functions $w \in \mathfrak{M}^+((0,\infty))$ which are non-equivalent to 0 and such that $\|w\|_{L_{\theta}(t,\infty)} < \infty$ for some t > 0.

We define two classes of kernels ρ , namely S_{n,p_1,p_2} and \tilde{S}_{n,p_1,p_2} .

Let H be the Hardy operator

$$(Hg)(t) := \int_0^t g(r)dr, \ 0 < t < \infty,$$

and

$$\mathbb{A} = \left\{ \varphi \in \mathfrak{M}^+((0,\infty);\downarrow) : \lim_{t \to \infty} \varphi(t) = 0 \right\}.$$

Теорема 1. Assume that $0 < \theta_1, \ \theta_2 \le \infty, \ w_1 \in \Omega_{\theta_1}, \ w_2 \in \Omega_{\theta_2}$.

1. Let $1 < p_1 < p_2 < \infty$ or $1 \le p_1 < \infty$ and $0 < p_2 \le p_1$, and $\rho \in S_{n,p_1,p_2}$. If the operator H is bounded from one weighted Lebesgue space $L_{\theta_1,v_1(\cdot)}(0,\infty)$ to another weighted Lebesgue space $L_{\theta_2,v_2(\cdot)}(0,\infty)$ on the cone \mathbb{A} , where

$$v_{1}(r) = w_{1} \left(\mu_{n,\rho,p_{1}}^{(-1)}(r) \right) \left| \left(\mu_{n,\rho,p_{1}}^{(-1)}(r) \right)' \right|^{\frac{1}{\theta_{1}}}, \ r > 0,$$

$$v_{2}(r) = w_{2} \left(\mu_{n,\rho,p_{1}}^{(-1)}(r) \right) \left(\mu_{n,\rho,p_{1}}^{(-1)}(r) \right)^{\frac{n}{p_{2}}} \left| \left(\mu_{n,\rho,p_{1}}^{(-1)}(r) \right)' \right|^{\frac{1}{\theta_{2}}}, \ r > 0,$$

$$\mu_{n,\rho,p_{1}}(r) = \frac{\int_{r}^{\infty} \rho(t) t^{\frac{n}{p_{1}} - 1} dt}{\int_{1}^{\infty} \rho(t) t^{\frac{n}{p_{1}} - 1} dt}, \ r > 0,$$

then the operator $I_{\rho(\cdot)}$ is bounded from $LM_{p_1\theta_1,w_1(\cdot)}$ to $LM_{p_2\theta_2,w_2(\cdot)}$.

2. Let $p_1 = 1$, $0 < p_2 < \infty$ and $\rho \in \tilde{S}_{n,1,p_2}$. Then the operator $I_{\rho(\cdot)}$ is bounded from $LM_{1\theta_1,w_1(\cdot)}$ to $LM_{p_2\theta_2,w_2(\cdot)}$ if and only if the operator H is bounded from $L_{\theta_1,v_1(\cdot)}(0,\infty)$ to $L_{\theta_2,v_2(\cdot)}(0,\infty)$ on the cone \mathbb{A} .

Necessary and sufficient conditions ensuring the boundedness of the Hardy operator H on the cone \mathbb{A} , are known for any measurable functions v_1 and v_2 and any $0 < \theta_1$, $\theta_2 \le \infty$. Application of these results and Theorem 1 allows us to obtain sufficient conditions for boundedness of the operator $I_{\rho(.)}$ from $LM_{p_1,\theta_1w_1(.)}$ to $LM_{p_2,\theta_2w_2(.)}$ for $p_1 > 1$ and necessary and sufficient conditions for $p_1 = 1$.

References

1) V.I. Burenkov, A. Gogatishvili, V.S. Guliyev, R.Ch. Mustafayev, Boundedness of the Riesz potential in local Morrey-type spaces, Potential Analysis, 35 (2011), no. 1, 67-87.