## СЕГМЕНТАЦИЯ ИЗОБРАЖЕНИЙ ПОДВОДНОГО МУСОРА И МОРСКИХ ОБИТАТЕЛЕЙ

## Пономарев Евгений Сергеевич

Acnupahm

Вычислительные системы и анализ данных в науке и технике, Сколковский институт науки и технологий, Москва, Россия

 $E\text{-}mail: \verb| evgenii.ponomarev@skoltech.ru| \\$ 

## **Научный руководитель** — Иван Валерьевич Оселедец

Океаны Земли населяет множество различных обитателей - рыб, рачков, моллюсков и др. Однако за последний век к ним присоединилось огромное количество различного мусора, загрязняющего их естественную среду обитания. С применением глубоководной техники становится возможным лучше изучить как естественную фауну, так и места загрязнений. Автоматические распознавание и сегментация несомненно полезны для автоматизации исследований.

## Иллюстрации



Одно из изображений датасета TrashCan.

Японское агентство морской науки и техники о Земле (JAMSTEC) собрало обширную электронную библиотеку глубоководных изображений J-EDI. На базе этой библиотеки исследователями [1] был построен набор данных TrashCan - это датасет для сегментации подводного мусора и животных. Он состоит из 7212 изображений, размечен двумя способами - instance и material. Первый способ

предполагает разметку мусора по типу объекта - например "контейнер а обитателей по виду - "угорь" и т.п. Всего 22 класса. Второй фокусируется на материале мусора (напр. "пластик") и содержит 16 классов. Аннотации в этом наборе данных имеют стандартный формат для задачи сегментации (instance segmentation): маски, отмечающие, какие пиксели изображения содержат каждый объект.

К сожалению, вместе с датасетом был приведен только результат для одного алгоритма сегментации объектов - Mask-RCNN[2]. Для предоставления более широкого представления о возможной точности сегментации и детекции мы обучили четыре современных алгоритма: Mask-RCNN[2], YOLACT[3], Cascade Mask-RCNN[4], Hybrid Task Cascade(HTC)[5] для двух видов разметки.

В задачи сегментации (segm) объект считается правильно распознанным, когда отношение пересечения маски предсказания и маски разметки к их объединению (IoU - intersection over union) больше порогового. Используется усреднение для набора порогов от 50% до 95% с шагом 5%. Для задачи детекции (bbox) используются обрамляющие прямоугольники (bounding boxes) вместо масок. Метрика, использованная для сравнения методов также является стандартной - средняя точность среди всех классов на всех объектах всех изображений (mAP - mean average precision). Отдельно посчитаны mAP для порога  $IoU=0.5~(AP_{.50})$ , для порога  $IoU=0.75~(AP_{.75})$ , также для маленьких, средних и больших объектов  $(AP_S, AP_M, AP_L)$ .

В названиях архитектур r50/r101 значит, что модель построена на базе глубокой нейронной сети ResNet-50/ResNet-101. х101 означает, что на базе ResNeXt-101. YOLACT работает для изображений, сжатых в 320x320 пикселей, остальные методы на изображениях в исходном размере (около 460x300). FPN означает, что использована версия с Feature Pyramid Network. Все алгоритмы построены и обучены с помощью библиотеки MMDetection[6], конфигурация запусков доступна в открытом доступе: https://github.com/evgps/mmdetection\_trashcan

Видно, что добиться наилучшего качества получилось при помощи Mask R-CNN или Cascade Mask-RCNN с небольшой разницей в результате. К удивлению, это существенно лучше, чем заявленные в исходной статье результаты для той же сети (но реализованной при помощи Detectron 2). Для сегментации (segm): 0.33/0.32 против 0.30/0.28 (для instance и material соответственно) и 0.43/0.38 против 34.5/29.1 для bbox. Особо хочется отметить, что быстрый алгоритм YOLACT позволяет получить не такое плохое качество сегментации

| Архитектура                                | Данные   | Задача | AP   | AP.50 | AP.75 | $AP_S$ | $AP_M$ | $AP_L$ |
|--------------------------------------------|----------|--------|------|-------|-------|--------|--------|--------|
| YOLACT<br>r101 320px                       | instance | segm   | 0.26 | 0.49  | 0.25  | 0.20   | 0.30   | 0.47   |
|                                            |          | bbox   | 0.36 | 0.58  | 0.39  | 0.27   | 0.40   | 0.52   |
|                                            | material | segm   | 0.22 | 0.45  | 0.19  | 0.20   | 0.24   | 0.35   |
|                                            |          | bbox   | 0.29 | 0.52  | 0.30  | 0.28   | 0.30   | 0.41   |
| HTC w/o<br>semantic<br>segmentation        | instance | segm   | 0.31 | 0.55  | 0.32  | 0.30   | 0.33   | 0.55   |
|                                            |          | bbox   | 0.41 | 0.61  | 0.44  | 0.37   | 0.42   | 0.64   |
|                                            | material | segm   | 0.29 | 0.53  | 0.27  | 0.26   | 0.30   | 0.41   |
| r50 FPN                                    |          | bbox   | 0.35 | 0.56  | 0.38  | 0.31   | 0.36   | 0.51   |
| Cascade<br>Mask-<br>RCNN x101<br>64x4d FPN | instance | segm   | 0.32 | 0.57  | 0.33  | 0.29   | 0.36   | 0.56   |
|                                            |          | bbox   | 0.42 | 0.62  | 0.44  | 0.36   | 0.45   | 0.65   |
|                                            | material | segm   | 0.31 | 0.56  | 0.28  | 0.26   | 0.32   | 0.42   |
|                                            |          | bbox   | 0.37 | 0.58  | 0.40  | 0.29   | 0.38   | 0.53   |
| Mask-<br>RCNN x101<br>32x8d FPN            | instance | segm   | 0.33 | 0.56  | 0.33  | 0.29   | 0.36   | 0.56   |
|                                            |          | bbox   | 0.43 | 0.62  | 0.47  | 0.32   | 0.47   | 0.66   |
|                                            | material | segm   | 0.32 | 0.58  | 0.30  | 0.27   | 0.33   | 0.43   |
|                                            |          | bbox   | 0.38 | 0.61  | 0.41  | 0.30   | 0.38   | 0.53   |

Таблица 1: Результаты детекции(bbox) и сегментации(segm) объектов на валидационном наборе данных датасета TrashCan

и может быть запущен в реальном времени на видеопотоке при использовании современных встраиваемых вычислителей.

Работа выполнена при поддержке Р $\Phi$ ФИ в рамках научного проекта No. 19-31-90172. **Литература** 

- Hong J., Fulton M., Sattar J. TrashCan: A Semantically-Segmented Dataset towards Visual Detection of Marine Debris. // ArXiv:2007.08097
- 2. He K., Gkioxari G., Dollar P., Girshick R. Mask R-CNN. // IEEE International Conference on Computer Vision (ICCV). 2017
- 3. Bolya D., Zhou C., Xiao F., Lee Y.J.. YOLACT: Real-time Instance Segmentation. // In ICCV 2019
- 4. Chen K., Pang J., Wang J., Xiong Y., Li X., Sun S., Feng W., Liu Z., Shi J., Ouyang W., Chen C., Lin . Hybrid task cascade for instance segmentation. // In CVPR 2019
- 5. Cai Z., Vasconcelos N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. // IEEE Transactions on Pattern Analysis and Machine Intelligence
- 6. Chen, K., Wang, J., Pang, J., Cao, Y. and others MMDetection: Open MMLab Detection Toolbox and Benchmark.//arXiv:1906.07155.