Секция «Математическая логика, алгебра и теория чисел»

on subword complexity of one sequence

Научный руководитель - Kanel-Belov Alexey

Golafshan Mohammadmehdi

Graduate (master)
Московский физико-технический институт, Moscow, Russia
E-mail: mgolafshan@yandex.ru
In this paper, we investigate unipotent dymamics on a torus and apply it to the following problem. For an integer k , consider the sequence of digits $\left(a_{n}\right)_{n>0}$, where an is the first digit in the decimal representation of 2 to the power n^{k}. For $k=1$, we study the sequence $1248136125 \ldots .$.

For $k=2$, we get $12156365121 \ldots$. and so on. In particular, we are interested in the number of factors of length n that may occur in such a sequence (i.e., the subsequences made of n consecutive digits).

The sequence made by powers of 2 one the circle with irrational angle is dense. It was proved in that case that $p_{w}(n)=4 n+5$.

Finally, the last part is dedicated to the very interesting relation existing between k dimensional torus with the sequence of left-most digit occurring in the decimal representation of 2 to the power n^{k}, where n, k are positive integers.

Digital problems of this type in Number theory are well-known to be difficult, e.g., in the literature, least non-zero digit of n ! in base 12 (Deshouillers et al.) or digits of n^{n} have been investigated. In particular, this permitted me to be familiarized with notions coming from symbolic dynamics.

References

1) Belov, G. Kondakov, I. Mitrofanov, Inverse problems of symbolic dynamics, arXiv.1104.5605
2) Ya. G. Sinai, Introduction to Ergodic Theory, Princeton Univ. Press, arithmetics and uniform distribution theory
3) M. Lothaire, Combinatorics on Words, Encycl. of Math. and its Applications, AddisonWesley, Reading, MA, 1983, Vol. 17
4) J. Shallit, J. Allouche, Automatic sequences : Theory, Applications and Generalizations, Cambridge university press, 2003
5) P. C. Shields, The Ergodic theory of discrete sample paths, Graduate studies in mathematics, American Mathematical Society, 1996
6) J. Cassaigne, A. Frid, On the arithmetical complexity of Sturmian words, Theoret. Comput. Sci., vol. 380, 304-316 (2007)
7) J. Cassaigne, F. Nicolas, Factor complexity, in Combinatorics, Automata and Number Theory, Encl. of math. and its applications 135, V. Berthé, M. Rigo (Eds.), Cambridge Univ. Press (2010)
