Секция «Математическая логика, алгебра и теория чисел»

О конгруэнц-когерентных алгебрах Риса и алгебрах с оператором

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра высшей алгебры, Москва, Россия E-mail: alex.lata@yandex.ru

Универсальная алгебра A конгруэнц—когерентна [4], если любая подалгебра в A, содержащая класс произвольной конгруэнции в A, является объединением классов этой конгруэнции. Таковыми являются конгруэнци—простые алгебры и алгебры без собственных подалгебр. Кроме того, свойством конгруэнц—когерентности обладают группы, кольца.

Подалгебра B алгебры A называется подалгеброй Puca, если объединением диагонали и квадрата $B \times B$ является конгруэнцией в A. Указанная конгруэнция называется конгруэнцией Puca. Алгебра A является алгеброй Puca, если любая ее подалгебра является подалгеброй Puca. Алгебры Pucca охарактеризованы в работах [2, 3].

Алгеброй с операторами (см. [1, §13]) называется алгебра с выделенной системой унарных операций, действующих как эндоморфизмы для остальных основных операций.

Предложение 1. Если алгебра Риса А является конгруэнц-когерентной, то она удовлетворяет одному из условий:

- 1) Алгебра А не имеет собственных подалгебр;
- 2) $A = B \oplus C$, где B и C без собственных подалгебр;
- 3) $\langle SubA, \subseteq \rangle$ uenb.

Предложение 2. Пусть $\langle A, \Omega \rangle$ — произвольная алгебра с оператором $f \in \Omega$. Если $\langle A, f \rangle \cong C_n^0$, или $\langle A, f \rangle \cong C_n^0 + C_m^0$, или $\langle A, f \rangle \cong C_1^t$, где $n, m \in \mathbb{N}$ и $t \in \mathbb{N} \cup \{\infty\}$, то алгебра $\langle A, \Omega \rangle$ является конгруэнц-когерентной

Источники и литература

- 1) Курош А.Г. Общая алгебра. Лекции 1969-1970 учебного года. М., 1974.
- 2) Chajda I., Duda J. Rees algebras and their varieties // Publ. Math. (Debrecen). 1985. Vol. 32. Pp. 17–22.
- 3) Chajda I. Rees ideal algebras // Math. Bohem. 1997. Vol. 122. No. 2. Pp. 125–130.
- 4) Geiger D. Coherent algebras // Notices Amer. Math. Soc. 1974. Vol. 21. A-436.