Изучение действия прогестерона и его аналогов, опосредуемое мембранными рецепторами в модельной системе Saccharomyces cerevisiae.

Научный руководитель – Смирнова Ольга Вячеславовна

Шляпина Виктория Львовна

Студент (бакалавр)

Московский государственный университет имени М.В.Ломоносова, Биологический факультет, Кафедра физиологии человека и животных, Москва, Россия $E\text{-}mail:\ Vikyl4es@rambler.ru$

Прогестерон - это стероидный гормон, выполняющий в организме множество разных функций. Он оказывает большое влияние на женские репродуктивные функции, участвует в нейрогормональных процессах мозга, а также в формировании полового поведения. Отмечено влияние прогестерона на сердечно-сосудистую систему, иммунную систему, участие в процессах пролиферации и апоптоза.

Действие прогестерона опосредуется двумя разными типами рецепторов. К ним относятся ядерные рецепторы (nPR-A и nPR-B) и мембранные рецепторы (mPR) субтипов: α , β , γ , δ , ϵ . Кроме того, действие стероида может осуществляться через неспецифические рецепторы, а также через связанные с мембранами компоненты рецепторов прогестерона (PGMRC1, PGMRC2). Эффекты прогестерона, опосредуемые разными типами рецепторов, могут значительно различаться. Для классических nPR-A и nPR-B описаны селективные лиганды, агонисты и антагонисты, практически не взаимодействующие с mPR. Однако для последних поиск селективных лигандов остается актуальной задачей.

Целью данной работы было:

- 1) создание модельной дрожжевой системы, экспрессирующей $mPR\alpha$ на высоком уровне и содержащей репортерный ген β -галактозидазы под промотором, чувствительным к сигнальному пути, активируемому прогестинами через этот рецептор, пригодной для анализа агонистической и антагонистической активности соединений, являющихся синтетическими аналогами прогестерона.
- 2) проведение анализа агонистической активности соединений, синтезированных на основе молекулы прогестерона в ИОХ им. Н.В.Зелинского.

В ходе работы:

- Посредством трансформации плазмидной ДНК клеток Saccharomyces cerevisiae штамма CRY была создана модельная дрожжевая система пригодная для анализа агонистической и антагонистической активности соединений аналогов прогестерона, действующих через $mPR\alpha$.
- Была выявлена дозозависимость действия прогестерона и его аналогов в модельной системе на промотор репортерного гена, выявляемый по β -галактозидазной активности.
- Соединения 19-гидроксипрегн-4-ен-20-он; 19-гидроксипрегн-3-ен-20-он; 6(E)-метоксиимино- 16α , 17α -циклогексанопрегн-4-ен- 3β -ол-20-он; 6(E)-метоксиимино- 16α , 17α -циклогексанопрегн-4-ен-3,20-дион , 16α 17 α -циклогесано- 5β -дигидропрогестерон проявляют агонистическую активность, достоверно не отличающуюся от активности прогестерона в нашей модельной системе.
- Соединения $16\alpha 17\alpha$ -циклогесано- 5α -дигидропрогестерон и 6α -метил- 16α , 17α -циклогекса- 5α -прегнан-3,20-дион проявляют слабую агонистическую активность в нашей модельной системе, а у кортизола, как и ожидалось, она практически отсутствует.