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We study the asymptotic behavior of solutions to linear stochastic differential equations with
subexponentially stable matrix. The result established in the form of the strong law of large
numbers is then applied to linear-quadratic Gaussian control problems over an infinite time-
horizon for undetectable systems.

Let X;,t > 0, be an n-dimensional stochastic process defined on a stochastic basic by

dXt = AtXt dt + thwt s XO =X,

o
where 4;, G; are known non-random matrices, [ [|G¢||*dt > 0, (|| - || — Euclidean matrix norm);
0
wy, t > 0, — is a d-dimensional Brownian motion; x is a non-random vector.
The problem of interest is to investigate the asymptotic behavior of || X;||* in the sense of

the strong law of large numbers [1|. More specifically, we are to consider the ratio

t
Z, = | X/ / 1GLIP ds,
0

as t — co. Here the non-random denominator represents the total variance of cumulative
disturbances. It is known (see [2]) that Z; — 0 a.s. if A; is exponentially stable. We will study
the case when ||A|| — 0,t — oo, i.e. A; does not possess such kind of stability. First of all, a
weaker notion of stability should be introduced.

Definition 1. We say that A; is subexponentially stable with the rate 6, > 0 if
i) 0 — 0,t — oo and [|As|| < kdy, t > 0, where & is a constant;

ii)
t
—ky [ 0, dv
H(I)(t> S)H < Kie 5 , s<t,

for some constants k1, kg > 0; ®(t, s) is the fundamental matrix corresponding to Ay;
t

iii) [d5ds — oo, t — 00.
0

One important implication of exponentially stable A; is the bounded E| X;||?. For the case
of subexponential stability we require the following

Assumption AG. Let A; and G; be such that
a) A; is subexponentially stable with the rate d;

b) E||X||? is bounded, t > 0.
Remark. b) is satisfied if ||Gy||* < &by, t > 0, for some constant ¢ > 0.

The main result is stated below.
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Theorem 1. Assume AG. Then
L
im

; - =0, as.,t—00.
—00
[ G ds
0

Next we discuss some applications of the established result to LQG control problems for
undetectable systems over an infinite time-horizon.

The controlled stochastic process Y;, t > 0, is governed by
d}/t = Ot}/;dt + BtUtdt + det y }/E) =1, (1)

where Cy, By, V; are bounded, ||Cy|| = 0,t — oo; Uy, t > 0, is an admissible control, i.e. an
Fi = o{ws, s < t}-adapted k-dimensional process such that there exists a solution to (1). Let
us denote by U the set of admissible controls. The cost functional over the planning horizon
[0, 7] is given by

T
hﬂﬂz/[W@E+WMMu
0

where @ is symmetric and positive semidefinite, ||Q;|| — 0,t — oc.

Since we have asymptotically singular C; and @y, the pair (A, /Q;) is undetectable. In the
absence of detectability, the well-known feedback control law U;” = —B/11,Y}", if it exists, might
not provide the exponentially stable C; — B, B;Il; in the equation

dY; = (Ci = BBIL)Y; dt + Vidwy, Y5 =y,

where the bounded absolute continuous function II;, ¢ > 0, with values in the set of symmetric
positive semidefinite matrices, satisfies the Riccati equation

1T, 4+ IL,C, 4+ C/I1, — IL,B,BJII, + Q; = 0.

As a result, U* could not be optimal as 7' — oo with respect to the long-run (pathwise)
average or (pathwise) extended long-run average cost criteria. However, subexponential stability
assumption on C; — By B/I1; + (1/2)p;/p: along with |||11;|| < p; — 0, t — o0, included into a set
of conditions guarantee average (or pathwise) optimality of U*. The optimality can be obtained
with the use of Theorem 1 for X; = ,/p;Y".
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