Секция «Математическая логика, алгебра и теория чисел»

О делимости перманента (± 1) -матриц Таранин Константин Александрович

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра высшей алгебры, Москва, Россия E-mail: coloconstar@mail.ru

Пусть \mathbb{R} — поле действительных чисел, M_n — кольцо $n \times n$ матриц над этим полем, S_n — группа перестановок на множестве из n элементов.

Определение 1. Перманентом матрицы $A \in M_n$ называется число

$$per(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} \dots a_{n\sigma(n)}.$$

Далее речь пойдёт о перманенте (-1,1)-матриц. Следуя обозначениям из [2], будем обозначать через Ω_n множество (-1,1)-матриц порядка n. В [2] были доказаны следующие 3 утверждения.

Предложение 1. [2, лемма 5 и утверждение 4]. Пусть $n=2^t-1,\ t\in\mathbb{N}$. Тогда для $A\in\Omega_n$ справедливо, что

$$\operatorname{per}(A) \vdots 2^{n-\lfloor \log_2 n \rfloor - 1}$$
.

Предложение 2. [2, лемма 5]. В условиях предыдущего утверждения, степень $n-\lfloor \log_2 n \rfloor -1$ нельзя заменить на некоторое $d_0 > n-\lfloor \log_2 n \rfloor -1$. Более того, пусть $A \in \Omega_n$, где $n=2^t-1$ для некоторого t. Тогда

$$\operatorname{per}(A) \not : 2^{n-\lfloor \log_2 n \rfloor}.$$

Предложение 3. [2, утверждение 5]. Пусть $n \neq 2^t - 1$ для всех $t \in \mathbb{N}$, тогда для всех $A \in \Omega_n$ справедливо, что

$$\operatorname{per}(A) : 2^{n-\lfloor \log_2 n \rfloor}.$$

Доказательство, предъявленное авторами [2], опирается на результаты, полученные в работе [3]. В докладе будет представлен новый, более простой, метод доказательства всех указанных утверждений, позволяющий доказать их напрямую, засчёт ряда комбинаторных рассмотрений, и не использующий результаты [3]. Доклад основан на совместной работе [1] докладчика с М.В. Будревичем и А.Э. Гутерманом.

Источники и литература

- 1) М.В. Будревич, А.Э. Гутерман, К.А. Таранин, О делимости перманента (± 1)-матриц. Записки научных семинаров ПОМИ 439 (2015), 26–37.
- 2) A.R. Kräuter, N. Seifter, On some questions concerning permanents of (1, -1)-matrices. Israel J. Math. 45, No. 1 (1983), 53–62.
- 3) H. Perfect, Positive diagonals of (±1)-matrices. Monatsh. Math. 77 (1973), 225–240.

Слова благодарности

Автор благодарен своему научному руководителю профессору А.Э. Гутерману за постановку задачи, постоянное внимание к работе и ценные обсуждения. Работа выполнена при частичной финансовой поддержке гранта РФФИ 15-31-20329.