Секция «Математическая логика, алгебра и теория чисел»

О заданном аннуляторами частичном порядке в алгебрах с единицей Ефимова Маргарита Павловна

A c n u p a н m

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра математического анализа, Москва, Россия

 $E ext{-}mail: efimova.margarita@gmail.com}$

В работе [1] было введено понятие

-порядка для произвольных ассоциативных колец с единицей, расширяющее понятие

-порядка для матриц и операторов в банаховом пространстве. Наша цель — исследовать свойства этого порядка для алгебр над полем, в первую очередь конечномерных.

Пусть R — ассоциативное кольцо с единицей, $a \in R$. Через °a и a° обозначим соответственно левый и правый аннулятор элемента a,

$$a = \{x \in R \mid xa = 0\}, \quad a = \{x \in R \mid ax = 0\}.$$

Рассмотрим следующее множество \mathcal{I}_R элементов кольца R:

$$\mathcal{I}_R = \{a \in R \mid \text{существует идемпотент } p \in R, ^\circ a = ^\circ p, a^\circ = p^\circ \}.$$

Для любого элемента $a \in \mathcal{I}_R$ идемпотент p определяется единственным образом, будем обозначать его p_a .

Определение 1. Пусть $a,b\in R$. Тогда $a\stackrel{\sharp}{\leqslant} b,$ если и только если a=b, или $a\in \mathcal{I}_R$ и $a=p_ab=bp_a.$

Определение 2. Пусть $a, b \in R$. Будем говорить, что элементы a и b ортогональны $(a \perp b)$, если и только если ab = ba = 0.

Определение 3. Отображение $T \colon R \to R$ будем называть 0-аддитивным, если для любых $a, b \in R, \ a \in \mathcal{I}_R, \ a \perp b$, имеем $T(a) \in \mathcal{I}_R, \ T(a) \perp T(b)$, и T(a+b) = T(a) + T(b).

Свойство 0-аддитивности отображения оказывается тесно связанным с его монотонностью относительно \leq -порядка.

Оказывается, 0-аддитивные отображения на наборах простых алгебр обладают следующим свойством:

Теорема 1. Пусть \mathbb{F} — произвольное поле, $\mathcal{A}_1, \ldots, \mathcal{A}_k$ — конечномерные простые алгебры с единицами над \mathbb{F} , $\mathcal{A} = \mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_k$, $T \colon \mathcal{A} \to \mathcal{A}$ — инъективное 0-аддитивное отображение. Тогда существует такая перестановка $\sigma \in S_k$, что $T(\mathcal{A}_s) \subseteq \mathcal{A}_{\sigma(s)}$ для всех $s = 1, \ldots, k$.

В применении к матричным алгебрам полученный результат может быть доведен до полной характеризации инъективных аддитивных отображений:

Теорема 2. Пусть \mathbb{F} — произвольное поле, $\mathcal{A}_s = M_{n_s}(\mathbb{F})$, $\mathcal{A} = \mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_k$, $T \colon \mathcal{A} \to \mathcal{A}$ — инъективное аддитивное отображение, монотонное относительно \leq -порядка. Тогда существует такая перестановка $\sigma \in S_k$, что $T(\mathcal{A}_s) \subseteq \mathcal{A}_{\sigma(s)}$, $n_{\sigma(s)} = n_s$, и каждое отображение $T(\mathcal{A}_s)$ стандартно (существуют такие $\alpha_s \in \mathbb{F}$,, $P_s \in GL_n(\mathbb{F})_{n_s}(\mathbb{F})$, ϕ_s — эндоморфизм поля \mathbb{F} , u_s — тождественное отображение или транспонирование, что $T(X) = \alpha_s P_s^{-1} u_s(X^{\phi_s}) P_s$ для всех $X \in \mathcal{A}_s$).

Источники и литература

1) Dragan S. Rakic. Generalization of sharp and core partial order using annihilators, Banach J. Math. Anal. 9 (2015), No. 3, 228–242.

Слова благодарности

Автор выражает благодарность профессору А. Э. Гутерману за формулирование задачи и ценные обсуждения. Работа выполнена при частичной финансовой поддержке гранта РФФИ 15-31-20329.