Секция «Дифференциальные уравнения, динамические системы и оптимальное управление»

О поведении тел, перфорированных вдоль границы $\ddot{E}pos\ Coбup\ Touposu$ ч

Студент (бакалавр)

Филиал Московского государственного университета имени М.В.Ломоносова в городе Душанбе, Душанбе, Таджикистан E-mail: sobir.yorov94@qmail.com

Пусть $\Omega \subset \mathbb{R}^2$ — гладкая область в нижней полуплоскости с кусочно гладкой границей $\partial \Omega = \Gamma_1 \cup \Gamma_2$, часть Γ_2 — отрезок на оси абсцисс [-1,1]. Часть Γ_1 вертикальна в окрестности концов отрезка [-1,1]. Пусть B — круг $\{\xi:\xi_1^2+(\xi_2+\frac{1}{2})^2\leq a^2\},\ 0\leq a\leq \frac{1}{2}$. Обозначим $B_\varepsilon^j=\{x\in\Omega:\varepsilon^{-1}(x_1-x_1^j,x_2)\in B\},\ j\in\mathbb{N},\ B_\varepsilon=\bigcup_j^{N_\varepsilon}B_\varepsilon^j,\ \Gamma_\varepsilon=\partial B_\varepsilon$. Точки x_1^j расположены непериодически на оси. При этом в объединение B_ε входят только те шары, которые целиком попали в область Ω . Предполагается, что \mathcal{N}_ε имеет порядок $\mathcal{O}(|\ln\varepsilon|^\alpha),\ \alpha\in(0,1),$ т.е. количество шаров при стремлении ε к нулю растёт достаточно . Определим область Ω_ε как $\Omega\setminus\overline{B_\varepsilon}$ (см. рис. 1). Пусть $H^1(\Omega_\varepsilon,\Gamma_1\cup\Gamma_\varepsilon)$ — множество функций из соболевского пространства $H^1(\Omega_\varepsilon)$ с нулевым следом на $\Gamma_1\cup\Gamma_\varepsilon$. Аналогично, через $H^1(\Omega,\Gamma_1)$ будем обозначать подмножество функций из $H^1(\Omega)$ с нулевым следом на Γ_1 . В дальнейшем будем отождествлять функции из пространства $H^1(\Omega_\varepsilon,\Gamma_1\cup\Gamma_\varepsilon)$ с функциями из $H^1(\Omega)$, равными нулю в B_ε , а функции из пространства $L_2(\Omega_\varepsilon)$ с функциями из $L_2(\Omega)$, равными нулю в B_ε . С другой стороны, для сужения функций из $L_2(\Omega)$ на Ω_ε будем сохранять их обозначения. Рассматриваются следующие краевые задачи:

$$\begin{cases}
\Delta s^{\varepsilon} = -f & \text{B} \quad \Omega_{\varepsilon}, \\
s^{\varepsilon} = 0 & \text{Ha} \quad \Gamma_{1} \cup \Gamma_{\varepsilon}, \\
s^{\varepsilon} x_{2} = 0 & \text{Ha} \quad \Gamma_{2}
\end{cases}$$

$$\begin{cases}
\Delta s^{0} = -f & \text{B} \quad \Omega, \\
s^{0} = 0 & \text{Ha} \quad \Gamma_{1}, \\
s^{0} x_{2} = 0 & \text{Ha} \quad \Gamma_{2}.
\end{cases}$$
(1)

Теорема. Пусть $s^{\varepsilon} \in H^1(\Omega_{\varepsilon}; \Gamma_1 \cup \Gamma_{\varepsilon})$ и $s^0 \in H^1(\Omega; \Gamma_1)$ — обобщенные решения задач, тогда

$$s^{arepsilon} \longrightarrow s^0$$
 сильно в $H^1(\Omega)$ при $arepsilon \to 0$.

Иллюстрации

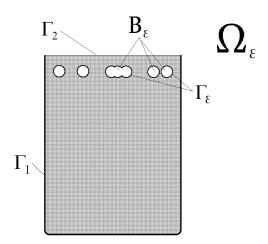


Рис. 1. Область, перфорированная вдоль границы