Секция «Дискретная математика и математическая кибернетика» Алгоритм построения оптимального расписания движения поездов на однопутном участке с разъездом при заданных директивных сроках

Тарасов Илья Алексеевич¹, Мусатова Елена Геннадьевна²

1 - Московский государственный университет имени М.В.Ломоносова, Физический факультет, Москва, Россия; 2 - Иркутский государственный университет, Иркутск, Россия

E-mail: ia.tarasoff@yandex.ru

1. Описание задачи

Рассматривается задача построения оптимального расписания движения поездов по однопутному участку железной дороги. Имеется два множества поездов, N_1 и N_2 , для каждого поезда задан директивный срок. Поезда множества N_1 следуют со станции 1 на станцию 2, поезда множества N_2 следуют в обратном направлении со станции 2 на станцию 1. Между станциями находится разъезд для пропуска встречных поездов. Необходимо построить расписание движения поездов, т.е. установить порядок следования поездов с первой и второй станций. В данной модели рассматривается разъезд с одним дополнительным путём, вмещающим один поезд (будем считать, что любой поезд помещается в разъезд).

Обзор моделей и методов железнодорожного планирования может быть найден в [1]. В работах [2-3] задача ставится как задача теории расписаний с несколькими приборами, т.е. участки пути это "приборы", а поезда — "работы". Целочисленная модель для задачи с однопутными железными дорогами может быть найдена в [4].

2. Метод решения

Выбор порядка движения поездов с разных станций на практике определяется диспетчером. На основе возможных решений диспетчера вводятся состояния системы. Алгоритм динамического программирования последовательно решает подзадачи со всеми возможными количествами поездов на первой и второй станциях, начиная с минимальных значений. Трудоемкость алгоритма — $O(n^2)$ операций, где n — суммарное число поездов на станциях 1 и 2.

Работа выполнена при финансовой поддержке РФФИ (гранты № 15-07-03141, 15-07-07489).

Источники и литература

- 1) Lusby R.M. Railway track allocation: Models and methods // Lusby R.M., Larsen J., Ehrgott M., Ryan D. OR Spectr. 2011. oct. Vol. 33. no. 4. Pp. 843–883.
- 2) Szpigel B. Optimal train scheduling on a single line railway // Szpigel B. OperRes. 1973. Pp. 344–351.
- 3) Gafarov E.R. Two-station single-track railway scheduling problem with trainsof equal speed // Gafarov E.R., Dolgui A., Lazarev A.A. Computers and Industrial Engineering. 2015. Vol. 85. Pp. 260 267.
- 4) Branlund U. Railway timetabling using lagrangian relaxation // Brannlund U., Lindberg P.O., Nou A., Nilsson J.E. Transportation Science. 1998. apr. Vol. 32. no. 4. Pp. 358–369.

Слова благодарности

Авторы выражают признательность А. А. Лазареву за всестороннюю помощь, ценные комментарии и критику.