Секция «Вещественный, комплексный и функциональный анализ»

Метрики на пространствах вероятностных мер Борисович Василий Мокин

A c n u p a н m

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра теории функций и функционального анализа, Москва, Россия E-mail: mokin93@ya.ru

Пусть на метрическом пространстве (U,d) задана неотрицательная функция стоимости c(x,y). Обозначим через $\hat{\mu}_c$ и $\mathring{\mu}_c$ функционал Канторовича и функционал Канторовича – Рубинштейна:

$$\hat{\mu}_c(P_1, P_2) = \inf_{Q_x = P_1, Q_y = P_2} \int_{U \times U} c(x, y) dQ, \qquad \hat{\mu}_c(P_1, P_2) = \inf_{Q_x = Q_y = P_1 - P_2} \int_{U \times U} c(x, y) dQ.$$

Очевидно, что $\mathring{\mu}_c \leqslant \mathring{\mu}_c$. Основная задача этой работы — оценить $\mathring{\mu}_c$ через $\mathring{\mu}_c$ снизу для некоторых пространств. Для пространства \mathbb{R} с функцией $c(x,y) = |x-y| max(1,|x|^{p-1},|x|^{p-1})$ такая оценка была получена в работе [1] (теорема 6.4.1), однако представленное в ней доказательство не обобщается на общий случай, рассмотренный в этом докладе.

Пусть $\phi - 1$ -липшицева функция на U. Будем рассматривать функции стоимости вида $c(x,y) = d(x,y)k(\phi(x),\phi(y))$, где k(s,t) — неотрицательная симметричная функция, неубывающая по обоим аргументам $s,t \in \mathbb{R}$.

Введём функцию b на \mathbb{R}^2 , множество G и функцию β на G следующим образом:

$$b(s,t) = \sup \left\{ |f(s) - f(t)| \mid f : \mathbb{R} \mapsto \mathbb{R}, \ \forall x, y \in \mathbb{R}, \ |f(x) - f(y)| \right\},$$

$$G = \left\{ (\phi(x), \phi(y), d(x, y)) \mid x, y \in U \right\},$$

$$\beta(s,t,l) = \inf \left\{ \frac{b(s,v) + b(t,v)}{k(s,t)l} \mid v \leqslant \frac{s+t-l}{2} \right\}.$$

Теорема 1. $\mathring{\mu}_c \geqslant \left(\inf_{(s,t,l)\in G} \beta(s,t,l)\right) \hat{\mu}_c$.

Пусть далее ϕ имеет вид $\phi(x) = \phi_a(x) = d(x,a)$ при некотором фиксированном $a \in U$. **Теорема 2.** Если существуют такие $\alpha > 1$ и $\varepsilon > 0$, что для всякого $t \geqslant 0$ выполняется $k(0,t) \geqslant \varepsilon k(\alpha t, \alpha t)$, то $\mathring{\mu}_c \geqslant \frac{\varepsilon}{2(1-\log_{\alpha}\varepsilon)}\mathring{\mu}_c$.

Источники и литература

1) Rachev S. T. Probability metrics and the stability of stochastic models. John Wiley & Sons, Chichester – New York – Brisbane – Toronto – Singapore, 1991.