Секция «Математика и механика»

On the lattice of all soluble Fischer classes Царев Александр Александрович Кандидат наук

Витебский государственный университет, $M\Phi$, Витебск, Беларусь E-mail: alex vitebsk@mail.ru

All groups considered are finite and soluble. All unexplained notations and terminology are standard (see [1]).

The symbol \mathfrak{N} denotes the class of all nilpotent groups. Recall that for any class of groups $\mathfrak{F} \supseteq (1)$ an intersection of all such normal subgroups N of a group G that $G/N \in \mathfrak{F}$ is called an \mathfrak{F} -residual of G.

A closure operation on the set of classes of groups is a map C with the properties:

 $C\mathfrak{X} \subseteq C\mathfrak{Y}$ if $\mathfrak{X} \subseteq \mathfrak{Y}$ and $\mathfrak{X} \subseteq C\mathfrak{X} = C(C\mathfrak{X})$.

A class of groups \mathfrak{X} is called C-closed if $\mathfrak{X} = C\mathfrak{X}$.

Let \mathfrak{X} be a class of groups. Then

 $N_0 \mathfrak{X} = (G \mid \exists N_i \triangleleft \triangleleft G, N_i \in \mathfrak{X} \text{ where } i = 1, ..., r \text{ and } G = \langle N_1, ..., N_r \rangle);$

 $s_F \mathfrak{X} = (G \mid G \leq H \in \mathfrak{X} \text{ and } G^{\mathfrak{N}} \triangleleft \triangleleft H).$

The class of groups $\mathfrak{X} \neq \emptyset$ is called a *Fischer class* if $\mathfrak{X} = S_F \mathfrak{X}$ and $\mathfrak{X} = N_0 \mathfrak{X}$.

A lattice L is said to be an *algebraic lattice* if it is a complete lattice and every element of L can be written as a join of compact elements. With respect to inclusion \subseteq the set of all soluble Fischer classes is a complete lattice.

Theorem. The lattice of all soluble Fischer classes is algebraic.

Литература

 Doerk K., Hawkes T. Finite soluble groups – Berlin – New York: Walter de Gruyter, 1992. – 891 p.