Конференция «Ломоносов 2011»

Секция «Математика и механика»

Напряженно деформированное состояние гибких кольцевых пластин переменной жесткости в магнитном поле Нарольский Михаил Викторович

Аспирант

Киевский Национальный Университет имени Тараса Шевченко, Механико-математический факультет, Киев, Украина E-mail: jaw4uk@ukr.net

Рассматривается задача магнитоупругости напряженно-деформированного состояния кольцевой пластины переменной жесткости под действием нестационарного магнитного поля и произвольной механической нагрузки. То есть, рассматривается изотропная упругая пластина, изготовленная из материала с конечной проводимостью и которая находится во внешнем магнитном поле с заданным вектором напряженности $\vec{H_0}$. Кроме того, пластина является проводником равномерно распределенного стороннего электрического тока плотности $\vec{J_{CT}}$.

В качестве координатной плоскости выбираем срединную плоскость, которая отнесена к полярной системе координат r, θ . Координата γ отсчитывается по нормали к срединной плоскости. Толщина пластины изменяется по двум направлениям, т.е. $h = h(r, \theta)$.

Выбирая разрешающие функции $u, v, w, \vartheta_r, S, N_r, Q_r, M_r, E_{\theta}, B_{\gamma}$ в качестве искомых, после преобразований получаем разрешающую систему нелинейных дифференциальных уравнений в частных производных с переменными коэффициентами[5].

В векторном виде разрешающая система уравнений будет следующей:

$$\frac{\partial \vec{N}}{\partial r} = \vec{F} \left(r, \theta, t, \frac{\partial \vec{N}}{\partial \theta}, \frac{\partial^2 \vec{N}}{\partial \theta^2}, \frac{\partial^3 \vec{N}}{\partial \theta^3}, \frac{\partial^4 \vec{N}}{\partial \theta^4}, \frac{\partial \vec{N}}{\partial t}, \frac{\partial^2 \vec{N}}{\partial t^2} \right). \tag{1}$$

Добавляя к (??) граничные условия $B_1(\vec{N}(r_0,\theta,t)) = \vec{b}_1, B_2(\vec{N}(r_N,\theta,t)) = \vec{b}_2,$ и начальные условия $\vec{N} = 0, \frac{\partial \vec{N}}{\partial t} = 0$ при t = 0, получаем краевую задачу для гибких изотропных круглых пластин переменной жесткости в магнитном поле.

Последующее применение схемы Ньюмарка [6]

$$\ddot{u}^{t+\Delta t} = \frac{u^{t+\Delta t} - u^{t}}{b\left(\Delta t\right)^{2}} - \frac{1}{b} \left[\frac{\dot{u}^{t}}{\Delta t} + (0, 5 - b) \ddot{u}^{t} \right], \\ \dot{u}^{t+\Delta t} = \dot{u}^{t} + 0, \\ 5\Delta t \left(\ddot{u}^{t} + \ddot{u}^{t+\Delta t} \right)$$
(2)

позволяет весь интервал изменения по времени разбить на отдельные малые интервалы и проследить историю деформирования на каждом временном слое. Здесь *b*параметр схемы; верхние индексы указывают на принадлежность величины к соответствующему моменту времени, а Δt - шаг интегрирования.

Соотношение шагов разностной схемы по времени и пространственной координате оговаривается критерием устойчивости Куранта, согласно которому шаг сетки по времени не должен превышать времени, в течение которого возмущение, распространяющееся со скоростью звука, пробегает расстояние, равное размеру шага по пространственной координате. Значение шага по времени нужно выбирать из следующих соотношений:

$$\Delta t < \min \left\{ \begin{array}{l} \Delta t / C_M, \\ \frac{0.5(\Delta r)^2 \sigma \mu}{\rho^2}. \end{array} \right.$$

Здесь C_M - скорость распространения магнитоупругих возмущений; Δr - шаг по пространственной координате. Первое условие - это условие устойчивости - критерия Куранта для гиперболической группы уравнений, а второе условие - для уравнений параболического типа.

После применения схемы Ньюмарка (??) разрешающую систему магнитоупругости (??) для соответствующего временного слоя в векторной форме можно записать таким образом:

$$\frac{\partial \vec{N}}{\partial r} = \vec{F} \left(r, \theta, \frac{\partial \vec{N}}{\partial \theta}, \frac{\partial^2 \vec{N}}{\partial \theta^2}, \frac{\partial^3 \vec{N}}{\partial \theta^3}, \frac{\partial^4 \vec{N}}{\partial \theta^4} \right), \tag{3}$$

с граничными условиями $D_1(\vec{N}(r_0,\theta)) = \vec{d}_1, D_2(\vec{N}(r_N,\theta)) = \vec{d}_2.$

Где D_1, D_2 - задание прямоугольные матрицы; d_1, d_2 - заданные векторы. Краевая задача (??) должна быть дополнена начальными условиями.

На втором этапе двумерную задачу заменяем на одномерную с помощью метода прямых[4]. Предположим, что коэффициенты системы разрешающих уравнений и разрешающих функций – достаточно гладкие функции координаты θ . Производные по этой координате заменим их конечно – разносными аналогами. Разделяя отрезок изменения координаты θ на *n* полос, двумерную задачу (??) аппроксимируем системой обыкновенных дифференциальных уравнений порядка 10*n* для взаимосвязанных функций $\vec{N}^i(i=1,2,\ldots,n)$.

Подставляя в систему (??) вместо производных по координате θ конечно – разностные аналоги, получаем нелинейную систему 10n-го порядка, которая в конечных разностях имеет вид:

$$\frac{d\vec{N}_1}{dr} = \vec{F}\left(r, \vec{N}_1\right),\tag{4}$$

с краевыми условиями $G_1(\vec{N}_1(r_0)) = \vec{g}_1, G_2(\vec{N}_1(r_N)) = \vec{g}_2.$

Система уравнений (??) является нелинейной системой обыкновенных дифференциальных уравнений 10*n*-го порядка с переменными коэффициентами.

С помощью метода квазилинеаризации [2] исходная краевая задача (??), сводится к последовательности линейных краевых задач.

$$\frac{d\vec{N}^{k+1}}{dr} = \vec{F}_1\left(r, \vec{N}^{k+1}, \vec{N}^k\right),\tag{5}$$

$$G_1\left(\vec{N^k}\right)\vec{N^{k+1}}\left(r_0\right) = \vec{g}_1\left(\vec{N^k}\right), \ G_2\left(\vec{N^k}\right)\vec{N^{k+1}}\left(r_N\right) = \vec{g}_2\left(\vec{N^k}\right), \ (k = 0, 1, 2, ...).$$

Где $\vec{N^{k+1}}, \vec{N^k}$ - решения соответственно на (k+1)-ой и k-ой итерациях; $\vec{F_1} \left(\vec{N^{k+1}}, \vec{N^k} \right)$ - вектор правой части системы уравнений; $G_1 \left(\vec{N^k} \right), G_2 \left(\vec{N^k} \right), \vec{g_1} \left(\vec{N^k} \right), \vec{g_2} \left(\vec{N^k} \right)$ -

соответственно матрицы и правые части граничных условий. На каждом шагу итерационного процесса коэффициенты правой части линейной системы уравнений (??), элементы матриц G_1, G_2 и компоненты векторов \vec{g}_1, \vec{g}_2 граничных условий зависят от количества шагов по пространственной и временной переменным, а также от решения линейной задачи на предыдущем шаге, то есть последовательность краевых задач является связанной последовательностью линейных задач. Каждая из линейных краевых задач последовательности на соответствующем временном интервале решается численно с помощью устойчивого метода дискретной ортогонализации [3]. На первом по времени шаге за начальное приближение в итерационном процессе берется решение краевой задачи в линеаризованной постановке. На следующих шагах - за начальное выбирается решение, полученное на предыдущем шаге, которое является решением уже нелинейной задачи. Выбор такой схемы существенно уменьшает количество итераций, необходимых для решения задачи. Изложенная методика позволяет алгоритмизировать вычислительной процесс и решения геометрически - нелинейных краевых задач магнитоупругости кольцевых пластин переменной жесткости.

Литература

- 1. Амбарцумян С.А., Багдасарян Г.Е., Белубекян М.В. Магнитоупругость тонких оболочек и пластин М.; Наука, 1977.
- Беллман Р., Калаба Р. Квазилинеаризация и нелинейные краевые задачи. М.; Мир, 1968.
- Годунов С. К. О численном решении краевых задач для систем обыкновенных линейных дифференциальных уравнений //Успехи мат. наук., 1963. Т. 16. вып. 3. С. 171-174.
- 4. Григоренко Я.М., Мольченко Л.В. Основи теорії пластин та оболонок. Київ; Либідь, 1993.
- 5. Улитко А.Ф., Мольченко Л.В., Ковальчук В.Ф. Магнітопружність при динамічному навантаженні. Київ; Либідь, 1994.
- Newmark N.M. A method of Computation for Structural Dynamics // J. Eng. Mech. Div. Proc., ASCE. 1959. vol. 85. № 7. P. 67-97.